
Suggestions for an Alternate Introduction Method to the SEI PSP™

Steven Teleki
Director, Software Development

Webify Solutions, Inc.
teleki@computer.org

Abstract- The Personal Software Process™ (PSP™)
framework designed by Watts Humphrey from the Software
Engineering Institute (SEI) enables software engineers to
achieve outstanding software development performance.
Introducing the PSP into a software group following the SEI
recommended introduction method is challenging. By changing
the introduction method: to account for the software engineers’
individual learning speeds and styles, and to incorporate the
wisdom of the ages of focusing on one skill at a time and
practicing it until it is learned, all of the knowledge required to
implement the PSP framework can still be learned. Once the
PSP framework is established the team can work according to
the Team Software Process™ (TSP™) principles. With this
knowledge even people in small organizations can achieve high
levels of software development performance.

I. INTRODUCTION
In this paper I review results from the Personal Software Process

(PSP) class to show that the classes are effective for improving
software development performance as it is applied to common
software problems used in the class; review results for Team
Software Process (TSP) projects from the industry to show that
once the TSP is introduced into an organization the results are very
good; describe problems encountered during introducing the PSP;
and make suggestions toward an alternate introduction method.

According to Humphrey “The Personal Software Process™
(PSP™) is a self-improvement process designed to help you
control, manage, and improve the way your work. It is a structured
framework of forms, guidelines, and procedures for developing
software.” [1] Also according to Humphrey [2] the need for the
TSP arose because most of today’s software problems can only be
solved feasibly by a team of software developers. The goal of TSP
is to enable a group of software engineers that understand their
performance (because they apply the PSP framework) to be formed
into a jelled, high-performance software team. A spreadsheet [3]
accompanies the TSP book [2] that can help practitioners with the
data collection and analysis.

There are two assumptions made in this paper:
1. The PSP and TSP are effective at producing great results.

Once engineers apply the PSP framework and form TSP teams, to
their everyday work, they get extraordinary results.

2. The SEI-recommended PSP introduction method fails to
work under certain circumstances. The recommended method
fails mostly for organizations that consider themselves small and on
the leading edge. These are the organizations that cannot afford
dedicated people to devise new exercises and tools to make
necessary customizations to the PSP introduction method.
Therefore these types of organizations need guidance to introduce
the concepts embodied in the PSP and TSP into their everyday
work.

II. PSP AND TSP RESULTS
The first book on PSP [1] was published in 1995, but several

organizations have been using the PSP even before that. There was
a PSP class taught at Carnegie Mellon University during 1994. The
PSP is now over a decade old.

A. Personal Software Process (PSP) Class Results
The following chart from [4] shows a typical outcome of

engineers taking the PSP class. Their performance at writing
the programming assignments improves dramatically over
the course of the class.

Fig.1. Mean # of Defects/KLOC in Compile and Test [4]
The data I have from teaching the PSP class to over 100

software engineers supports the data published by the SEI.
B. Team Software Process (TSP) Industry Results

In the late nineties the SEI started pilot projects for the TSP. I
was part of one of these early pilot projects and I experienced first
hand the benefits of both PSP and TSP.

The use of PSP and TSP significantly reduces acceptance test
defect density (Fig.2) and reduces the average schedule deviation
(Fig.3).

Fig.2. Acceptance Test Defect Density [5]

One of the difficulties in assessing some of the benefits of
TSP is that some organizations that adopted the TSP had no
prior data on their performance. Of those organizations that
had data, many of them have shown impressive
improvements like the ones shown in Fig.2 & Fig.3.

Fig.3. Average Schedule Deviation [5]
For a more complete list of results consult [4] and [5] and

visit the SEI website at www.sei.cmu.edu/tsp.

III. PSP INTRODUCTION DIFFICULTIES
The PSP works once the practitioners have learned how to

apply the principles to their day-to-day work. Unfortunately,
getting to the point where the engineers have figured out
how to apply the PSP framework is difficult.
A. The PSP Introduction Method Recommended by the SEI

The PSP introduction method recommended by the SEI
follows Humphrey’s original recommendation [1]. The PSP
is introduced through a set of 7 processes (PSP0 through
PSP3) applied to the 10 programming assignments and 5
reports that the learner has to write.

Fig.4. The PSP Evolution [4], [1]
The PSP class has been taught in many variations. One is a

2-3 week long class where the learners go through all
assignments and reports one after another, always
completing the assignment before moving on to the next one.
Another version is where the learners go through Part I:
Planning (assignments 1 through 6) during a week or 7 work

days, followed by a few weeks of break, then another session
for Part II: Quality (assignments 7 through 10 and the final
report).

A common format is 2x5 days where the first work week
is dedicated to Planning, the second week to Quality. During
this intense week it is next to impossible for most folks to
complete their assignments, thus the assignments pile up,
and people end up doing them during weekends or after
work, when they are not at their best.
B. Problems Encountered with the Recommended Method

Teaching the PSP class to over 100 engineers in
companies that considered themselves on the leading edge,
demonstrated to me that the knowledge that people are
expected to learn by the end of the class is useful, but the
introduction doesn’t work as expected. I came to realize that
the problems I experienced were not just “whining” from
engineers who don’t want to change the way they have been
working. They genuinely didn’t understand how to make the
connection from the programs that they write in the class to
the work they do every day.

Here are some of the problems that I have encountered:

The class is too disruptive to regular business because
of its format. Everybody who attempted to convince an
organization to go ahead with the class has heard this
complaint before. The more a software organization needs
the knowledge embodied in the PSP framework, the more
the organization is not capable of taking a break to learn. If
they would be capable to stop to learn, they wouldn’t be in
the predicament that they are today.

Class tools and work tools are different. Often engineers
taking the class are not using their regular tools to perform
the classroom exercises. For the classroom exercises they
use laptops that may not even be theirs (only on loan). They
may not have the same environment setup as their regular
work. All this adds up to a lot of unfamiliar things. When the
class is over, they go back to doing all the familiar things
that they have been doing before the class.

Class programs and work programs are different.
Engineers writing, for example, user interface code for a web
application don’t see how something that they learn about
writing programs for numerical recipes can help them write
better user interface code. This problem is similar to the next
one.

The new knowledge is learned in a context that is
different from the context of the everyday work. The
engineers learning the new skills, for example planning and
estimation, reported after the class that now they know how
to apply these skills on these numerical type programs that
were used in the class, but their regular work is different, and
this same knowledge cannot be applied.

The technical solution of the applications developed in
the classroom is different from the technical solution
used in everyday work. Most applications even in this age
of object-oriented programming using Java or C# are still
monolithic applications with module dependencies that are
tightly coupling together the system’s parts. For engineers to
see how they could use their new skills on their everyday
problems, the new skills need to be learned on these
applications. Once they learned the new skills, they see that
writing monolithic applications is a problem.

Lack of tool support. This is an odd problem. Most large
(and some small) organizations that have embraced the PSP
have built their own tools. There are a few that are also

selling the PSP support tool. Because the market is still
limited, the prices are high. Folks in small organizations still
have to use the spreadsheet that the SEI folks created in the
late nineties. This is one problem that the alternate
introduction method doesn’t address.

IV. AN ALTERNATE PSP INTRODUCTION METHOD
In 2001 working with two other instructors we started to

prepare a new set of problems that would match more
closely the problems that the majority of engineers taking the
class were working on every day. The effort failed. We
created only a couple of assignments. This pointed out that
we could not create assignments fast enough to match the
variety of problems that the engineering teams are working
on.

The next experiment was to work with eager volunteers
who took the class on their own time. Even these eager folks
had difficulty seeing how they can use the knowledge gained
in their everyday work. Without doing a proper statistical
analysis of the data, I concluded that the results from this
group are harder to dismiss, since these folks wanted to learn
the new knowledge.
A. Customize the Learning to the Learner

In the book, Flawless Consulting [6], Peter Block picked a
provocative header for one of the subchapters: Choosing
Learning over Teaching. His view is that many consulting
engagements make the consultant central to learning. This
comes at a high cost: the learner never fully engages in the
subject.

Therefore, the alternate method must be base on a great
deal of one-on-one interaction between the coach and the
learner. This doesn’t have to be in person, email and
telephone work well.
B. Build One New Habit, Learn One New Skill at a Time

The idea of building new habits one at a time is not new.
We can find a reference to this idea in Benjamin Franklin’s
Autobiography written in the late 1700s: “My Intention
being to acquire the Habitude of all these Virtues, I judg’d it
would be well not to distract my Attention by attempting the
whole at once, but to fix it on one of them at a time, and
when I should be Master of that, then to proceed to another,
and so on till I should have gone thro’ the thirteen.” [7]

Peter Drucker expresses a similar idea in The Effective
Executive as he talks about a successful executive that
achieved great results during his tenure: “He did this by
single-minded concentration on one task at a time. This is
the ‘secret’ of those people who ‘do so many things’ and
apparently so many difficult things. They do only one at a
time. As a result, they need much less time in the end than
the rest of us.” [8]

The need for a gradual introduction of these methods
recurs in [1], [9]. As the authors of [9] talk about skipping
maturity levels, they say: “Because each maturity level in
CMM forms a necessary foundation on which to build the
next level, trying to skip levels is almost always
counterproductive.” Given that the PSP and TSP are built on
the same principles, we can assert that our focus should be
on figuring out how to effectively learn these concepts.

The suggested alternative introduction method is similar
the method recommended by the SEI, with few exceptions.
The concepts are built up one on the other as they are taught
in the PSP class. The difference is that instead of introducing
and practicing these concepts in a classroom learning format,

I suggest introducing these concepts in 60-90 minute
sessions, one at a time, and distributed a few weeks apart.
Leaving a few weeks between sessions leaves time for the
engineers to practice the material on their regular work and
not on assignments.

It is up to the coach to work with the learner to find
suitable size components or parts of work that the learner can
practice on to learn the new skills.

An outline of the proposed introduction method follows:
1. Identify tasks required to accomplish the project

objectives and log time worked on each identified task
(PSP 1.1)

2. Estimate task duration and schedule hours available
for project work for each project week based on the
time log from previous weeks (PSP 1.1)

3. Add peer review and unit test tasks to the personal
task list

4. Conduct a weekly personal review of the personal
data to identify lessons learned at the personal level
during the previous week and propose lessons to be
learned the following week (PSP 0.1)

5. Identify work phases and categorize tasks into phases
(PSP 0)

6. Analyze each personal work phase for entry and exit
criteria and input and output artifacts

7. Log defects found in your own work and determine
the injection phase for each (PSP 0)

8. Build review checklists based on the defect log and
replace most peer reviews with personal reviews
(PSP 2)

9. Identify system structure and apply personal iteration
to each software component addition or modification
(PSP 3)

10. Create a quality model of the system based on the
work phases and the defect injection and removal
rates

11. Analyze each task for the knowledge it requires and
decide on actions to improve the knowledge used to
complete the task (PSP 2.1)

12. Establish a size measure for the types of artifacts
(work products) that you create, analyze the changes
in the artifact size (PSP 1)

C. Getting Started
Get started by moving forward. Decide to do something

about the status quo. You need not be an executive to do
this. As Peter Senge expresses it in The Fifth Discipline [10]
it is sufficient to have three people who want change to get
started. Find your partners.

Start with a Lunch & Learn on the first point from above.
Leave ample time for Q&A. The material from point 1 above
is basic project management so it should be easier to get it
going. Once the concept is explained to engineers, work with
them to practice these skills.

It is good to have an SEI-certified PSP Instructor on hand,
because the instructor is expected to know the material
inside-out, therefore this person can be a great resource. It
can be a double-edge sword situation also, since the

instructor may not want to change things much, since
changing things will jeopardize his SEI certification.

Assuming that you found two willing partners, you will
need to get a copy of [1] and review [4], [5]. You need to
learn what is in these publications because it is difficult to
tweak something that you don’t understand. You can skip
some of the details, if you can rely on somebody who knows
this material. The goal is not to reinvent the PSP, but rather
to tweak the introduction and enable you to get it going in
your organization. You will think about improving what you
do, once you have the PSP implemented. The closed loop
corrective action is built into the PSP framework.

Understand the objectives of each of the steps outlined
above. Follow the advice from [11] to outline your work in
the format: outcome desired, action required. Practice this
also for a few weeks until it becomes a habit.

Some activities may seem tedious or unnecessary. The
message from [12] that reads as “A successful manager of
time is willing to do that which the unsuccessful manager of
time is not willing to do” can be fitted for your situation as
well: “A successful manager of personal process is willing to
do that which an unsuccessful manager of personal process
is not willing to do.”

CONCLUSION
The PSP provides a framework for software engineers to

do outstanding work. Learning the practices embodied in the
framework is difficult, because many of these practices
require new skills. New skills are difficult to learn. It is
important that we learn them one at a time, with ample
practice time, until they become a habit. Individuals who
understand their performance can form high-performance
teams and the TSP enables this.

ACKNOWLEDGMENT
Since 1992 the works of Watts Humphrey have deepened

my understanding of the software development process. I
owe him my deepest gratitude.

REFERENCES
[1] Humphrey, Watts, S. A Discipline for Software

Engineering, The Complete PSP Book. Boston, MA:
Addison-Wesley, 1995.

[2] Humphrey, Watts, S. Introduction to the Team Software
Process (TSPi). Reading, MA: Addison-Wesley, 2000.

[3] TSPi Support Tool that accompanies the TSPi book
http://www.awprofessional.com/content/images/
020147719X/support/020147719X_TSPi.zip (URL
current as of 15 May 2005).

[4] Humphrey, Watts, S. Pathways to Process Maturity.
http://www.sei.cmu.edu/news-at-sei/features/1999/jun/
Background.jun99.pdf (URL current as of 15 May 2005)
1999.

[5] SEI. Compilation Data for Projects Using TSP/PSP.
http://www.sei.cmu.edu/tsp/results/compilation.html,
(URL current as of 15 May 2005).

[6] Block, Peter. Flawless Consulting, A Guide to Getting
Your Expertise Used, Second Edition. San Francisco,
CA: Jossey-Bass/Pfeiffer, 2000.

[7] Franklin, Benjamin. The Autobiography and Other
Writings. New York, NY: Penguin Books, 1986.

[8] Drucker, Peter. The Effective Executive. New York, NY:
HarperBusiness Essentials, 1967, 1985, 1996, 2002.

[9] Paulk, Mark C., et. al. The Capability Maturity Model:
Guidelines for Improving the Software Process.
Reading, MA: Addison-Wesley, 1994.

[10] Senge, Peter, M. The Fifth Discipline, The Art and
Practice of a Learning Organization. New York, NY:
Currency Doubleday, 1990.

[11] Allen, David. Getting Things Done, The Art of Stress-
Free Productivity. New York, NY: Penguin Books,
2001.

[12] Franklin Day Planner System Guidebook. Salt Lake
City, UT: Franklin International Institute, 1989.

Revised: 15 May 2005

